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A B S T R A C T

The Stefan problem, involving the tracking of an evolving phase-change front, is the prototypical example of a
moving boundary problem. In basic one-dimensional problems it is well known that the front advances as the
square root of time. When memory or non-locality are introduced into the system, however, this classic signal
may be anomalous; replaced by a power-law advance with a time exponent that differs from n = 1/2. Up to now
memory treatments in Stefan problem models have only been able to reproduce sub-diffusive front movements
with exponents n < 1/2 and non-local treatments have only been able to reproduce super-diffusive behavior
n > 1/2. In the present paper, by using a generalized Caputo fractional derivative operator, we introduce new
memory and non-local treatment for Stefan problems. On considering a limit case Stefan problem, related to the
melting problem, we are able to show that, this general treatment can not only produce arbitrary power-law in
time predictions for the front movement but, in the case of memory treatments, can also produce non-power-law
anomalous behaviors. Further, also in the context of the limit problem, we are able to establish an equivalence
between non-locality and a space varying conductivity and memory and a time varying conductivity.

1. Introduction

A classical free boundary problem, generally referred as the Stefan
problem [1], concerns the study of the transient diffusion-controlled
melting/solidification (phase change) of a solid/liquid adjacent to a
heated/cooled surface. In the one-dimensional form of this problem, the
time-dependent position of the liquid-solid interface s(t), relative to the
heated/cooled surface, advances as the square root of time, s(t) ~ tn,
n = 1/2 [1], which is the expected normal behavior for a diffusion
process. Experimental observations of Stefan like and related phase-
change problems, e.g., frost growth [2] and moisture infiltration [3],
however, indicate that in some physical settings different time ex-
ponents, i.e., n > 1/2 (super-diffusive) or n < 1/2 (sub-diffusive), can
manifest. These observations have motivated theoretical studies to in-
vestigate general Stefan models formulations that can produce anom-
alous behaviors [4–11].

The recent work in [12] provides an extensive review on the theory
and applications of anomalous behavior in heat transfer system. One
method to treat anomalous behavior is by the introduction of a memory
into the system of interest, requiring that the current state of the system
depends on a weighting (usually decaying) of previous states in time;
this can be achieved in Stefan models by replacing the transient terms

in the governing equations with a 0 < ν ≤ 1 order time-fractional
derivative, representing a convolution in time [4–9,13]. An alternative
approach is to invoke a non-local behavior in which the operation of a
process at a given space point in the system depends not just on the
conditions at that point but also on a weighting of the current condi-
tions throughout the whole domain; this can be achieved in Stefan
models by replacing the temperature gradient in the heat flux definition
with a 0 < ν ≤ 1 order space-fractional derivative representing a
convolution in space [4,7–9]. Voller [8], working with a limit case
Stefan problem related to melting process, investigates how replacing
the transient and gradient terms with Caputo fractional derivatives [14]
of order 0 < ν < 1, representing, in turn, the effects of memory (time-
fractional) and non-locality (space-fractional), produces predictions for
the power-law advance of the phase front exhibiting a range of ex-
ponents i.e., 0 ≤ n ≤ 1. Replacing the transient term with a time-
fractional derivative (memory) results in a sub-diffusive power-law
front advance s = tn, 0 ≤ n ≤ 1/2. In contrast, replacing the gradient
term with a space-fractional derivative (non-local), produces a super-
diffusive advance s = tn, 1/2 ≤ n ≤ 1. We stress the point that pre-
dictions from a Stefan model with a time-fractional derivative are re-
stricted to sub-diffusive anomalous behavior while predictions from
models with a fractional gradient term are restricted to super-diffusive
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anomalous behavior.
Outside of using fractional calculus models, however, anomalous

behaviors for the phase front movement from a Stefan problem can also
be obtained by using a space and/or time dependent thermal con-
ductivity in a conventional (integer derivative) Fourier heat transport
equation. For example, on using a power-law in space definition of the
conductivity (e.g., a graded material), Falcini and Voller [10] derive a
closed analytical solution of a one-dimensional Stefan problem in which
the phase front movement recovers the full range of power-law in time
exponents, 0 ≤ n ≤ 1. In more recent work, Falcini et al. [4], working
with a generalized Fourier heat transport model that combines both
Caputo space and time fractional derivatives with a power-law in space
dependent conductivity, explore the connections between memory,
non-locality, and variable conductivity in setting the space-time scaling
for diffusion controlled problems. While this work provides a theore-
tical underpinning for the anomalous behaviors associated with gen-
eralized Stefan models it also introduces some ambiguity related to
matching a given model choice (memory, non-local, variable con-
ductivity) to a given observation of the phase front movement; e.g., as
shown in [4], with the appropriate choice of time derivative order or
power-law spacial variation of conductivity, both memory and non-
linear conductivity models can predict a power-law in time phase front
movement s= tn with an identical sub-diffusive exponent 0≤ n≤ 1/2.

At this point, we should recognize that anomalous diffusion signals
are not restricted to the form of a power-law in time but more correctly
include any signals whose variance does not grow linearly in time. In
this light, another interesting class of anomalous diffusion processes to
consider is ultraslow-scaled Brownian processes, where the variance
grows logarithmically in time (see for example [15] and the references
therein). Recovering such a behavior for the phase front movement,
however, is out of the reach of the current memory, non-local and
variable conductivity treatments that have been proposed for Stefan
models.

The objective of this paper is to introduce a general, fractional-
based treatments for modeling memory and non-locality in a Stefan
problem. The key step is to replace the standard Caputo fractional de-
rivative of temperature with respect to time t or space x, used in pre-
vious general Stefan model treatments, with an integro-differential
evolution operator that is essentially the Caputo fractional derivative of
temperature with respect to a general function of time f(t) or space f(x).
With appropriate settings, using these treatments in the Stefan problem,
even in the absence of a space or time varying conductivity, can not
only predict phase front movements with arbitrary positive power-law
time exponents 0 ≤ n ≤ 1 but can also predict front movements that
exhibit non-power-law anomalous behaviors. Further, in the context of
the limit melting Stefan problem introduced in Voller [8], we are able
to mitigate some of the ambiguity in matching a suitable model treat-
ment to given observations of front movement and temperature profile.
In particular, we show, in this limit problem, (i) that non-local treat-
ments are essentially equivalent to treatments that use a spatially
varying conductivity (representing a graded material), (ii) that memory
treatments are essentially equivalent to treatments that use a time
varying conductivity (representing an aging effect), and (iii) a clear
delineation of anomalous behaviors resulting from memory and non-
local treatments.

2. A one-phase, one-dimensional Stefan model

Without too much loss of generality we will carry our arguments in
this work by considering a one-phase, one-dimensional Stefan problem.
This involves the melting of a solid in a one-dimensional domain x ≥ 0.
Initially the solid is at the unique phase change temperature, T = 0 say,
and melting is induced at time t = 0, by raising and fixing the tem-
perature at x = 0 to a fixed value, e.g., T0 > 0. The governing
equation representing the heat conduction in the liquid domain is (see
[1])

∂
∂

= −
∂
∂

≤ ≤ρc T
t

q
x

x s t, 0 ( ), (1)

where q is the flux term, ρ is density and c is the specific heat (assumed
constant in this work). The initial condition is T(x > 0, t = 0) = 0 and
the boundary conditions are T(0, t) = T0 at x = 0 and T(s(t), t) = 0.
Since the problem is posed in an expanding domain, an extra condition
is needed at the moving interface s(t):

=q s t ρL ds
dt

( ( )) , (2)

stating that the advance of the front depends on the rate at which heat
arriving at the front can supply the latent heat L, required to melt the
solid.

Simply proposing alternative phenomenological models for the flux
term q will allow us to build from Eqs. (1) and (2) alternative memory
and non-local models.

3. Definitions and properties of operators

In order to provide a high degree of flexibility in the definitions of
the flux q in eqs. (1) and (2), in this work we will use a number of
convolution operators related to the fractional calculus. In the first
place, following the monograph by Kilbas et al. [14] (Section 2.5) we
consider the fractional 0 < ν ≤ 1 order integral of a function g(z) with
respect to another function f(z). Under the restrictions that f(z) is a
strictly monotonic increasing C1 function in the interval (0,z) with f
(0) = 0, we can write this integral as

∫≔ − ′−I g z
ν

f z f ζ f ζ g ζ dζ( ) 1
Γ( )

( ( ) ( )) ( ) ( ) .z
ν f z ν

0
,

0
1

(3)

We note that, when f(z) = z, we recover the Riemann–Liouville
fraction integral of order 0 < ν ≤ 1 and, on associating z with time t,
when f(z) = zα/β we recover the definition of Erdélyi–Kober fractional
integral recently applied in the studies on Generalized Grey Brownian
Motion (see, e.g., [16,17]). From this definition, appealing to the recent
work of Almeida in [18], we can write down a Caputo-type regular-
ization for an order 0 < ν ≤ 1 fractional derivative of a function g(z)
with respect to f(z) as

 ∫⎜ ⎟≔ ⎛
⎝ ′

⎞
⎠

≔
−

−− −O g z I
f z

dg z
dz ν

f z f ζ
dg
dζ

dζ

( ) 1
( )

( ) 1
Γ(1 )

( ( ) ( ))

.

z
ν f

z
ν f z ν

0
,

0
1 ,

0

(4)

We note the following properties of this derivative (see Theorem 5
in [18]),

 =O I g z g z( ) ( ),z
ν f

z
ν f

0
,

0
, (5)

and (see Lemma 1 in [18])

 >−O f z f z β( ) ~ ( ) , 0.z
ν f β β ν

0
,

(6)

4. Particular Stefan models

4.1. A conventional Stefan model

In the conventional treatment we assume that the flux can be re-
presented by Fourier's first law

= = − ∂
∂

q q K T
x

,F
(7)

giving rise to the following governing equation and front balance
condition

∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎞
⎠

≤ ≤ρc T
t x

K T
x

x s t, 0 ( ),
(8)
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− ∂
∂

=
=

K T
x

ρL ds
dt

,
x s t( ) (9)

where, in a general setting, we can allow for both time and space
variations in the conductivity K. The initial T(x > 0, t = 0) = 0 and
boundary T(0, t) = T0, T(s(t), t) = 0 conditions, remain as before.

4.2. A general Stefan model with memory

To introduce memory, we use the fractional order integral define in
Eq. (3) to construct the following generalization of the Fourier law

∫= = − ∂
∂

− ∂
∂

′

= − ∂
∂

⎛
⎝

∂
∂

⎞
⎠

−q q x t κ
ν t

f t f τ T
x

f τ dτ

κ
t

I T
x

( , )
Γ( )

( ( ) ( )) ( )

,

FM t ν

t
ν f

0
1

0

,
(10)

where 0 < ν ≤ 1, and κ is a scaling constant. Note on setting f(t) = t
we recover the flux model introduced in the memory Stefan model
proposed in [7].

By using Eq. (10) in our base Stefan model eqs. (1) and (2), we
arrive at the following memory model

⎜ ⎟

∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎛
⎝

∂
∂

⎞
⎠

⎞
⎠

≤ ≤ρc T
t

κ
x t

I T
x

x s t, 0 ( ),t
ν f

0

,

(11)

with

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
=

κ
t

I T
x

ρL ds
dt

.t
ν f

x s t0

,

( ) (12)

Due to its conserved nature, this will be our preferred form for a
memory model. Note, however, that by dividing by f′(t) and applying
the fractional integral operator −It

ν f
0

1 , to both side of eqs. (11) and (12),
we arrive, on using the properties of the general-Caputo definition in
eqs. (4) and (5), the alternative form of memory Stefan problem

 = ∂
∂

≤ ≤ρc O T κ T
x

x s t, 0 ( ),t
ν f

0
, 2

2 (13)

− ⎛
⎝

∂
∂

⎞
⎠

=
=

κ T
x

ρL O s t( ).
x s t

t
ν f

( )
0

,

(14)

On setting f(t) = t, we recover the fractional derivative memory
forms, found in the current literature (e.g., [4–9]).

4.3. A general non-local Stefan model

A general non-local (GNL) model is constructed through by using
the general-Caputo fractional derivative definition in Eq. (4), in order to
replace the gradient term in the Fourier law (Eq. (7)), i.e.,

= = −q q x t κ O T( , ) ( ),GNL
x
ν f

0 0
,

(15)

leading to the non-local Stefan model

Fig. 1. Model choices for limit case Stefan problem.
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∂
∂

= ∂
∂

≤ ≤ρc T
t

κ
x

O T x t x s t( ( , )), 0 ( ),x
ν f

0 0
,

(16)

− =κ O T s t ρL ds
dt

( ( )) .x
ν f

0
,

(17)

5. A limit case Stefan model

To arrive at analytical solutions that will expose the anomalous
signals, associated with the various flux choices in the general Stefan
model introduced in the previous section, we consider the limit Stefan
problem, previously studied in [4,8,9]. This is obtained by setting the
density ρ and latent heat L to unity and letting the specific heat c→ 0. In
the context of the one-dimensional Stefan problem studied here, the
physical interpretation of the limit problem is the moisture filling (in-
filtration) into an initially dry, horizontal, porous tube under the ap-
plication of a fixed pressure head at x = 0.

5.1. The conventional limit Stefan model

Letting c → 0 in the conventional Stefan problem, eqs. (8) and (9),
leads to the following limit problem

∂
∂

⎛
⎝

∂
∂

⎞
⎠

= ≤ ≤
x

K T
x

x s t0, 0 ( ),
(18)

− ∂
∂

=
=

K T
x

ds
dt

.
x s t( ) (19)

The initial and boundary conditions, used here and in all alternative
versions of this problem are, T(x > 0, t = 0) = 0 and boundary
T(0, t) = 1, T(s(t), t) = 0 (see Fig. 1).

In a general setting, the conductivity K could be a function of space
or time. For example we could imagine that the media is graded such
that the conductivity increases or decreases with space. Alternatively
we might imagine a situation where the uniform ambient conditions are
changing in such away to induce temporal changes in the conductivity.
We will examine particular solutions for these two cases in detail below.

5.2. A limit Stefan model with memory

Letting c → 0 in the memory Stefan problem, eqs. (11) and (12),
leads to the following limit problem

⎜ ⎟

∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎛
⎝

∂
∂

⎞
⎠

⎞
⎠

= ≤ ≤
x

q
x t

I T
x

x s t( ) 0, 0 ( ),FM
t
ν f

0

,

(20)

with

= − ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
=

q κ
t

I T
x

ds
dt

.FM
t
ν f

x s t0

,

( ) (21)

From Eq. (20) we can infer, for this problem, that the memory flux
qFM, defined in Eq. (10), can only be a function of time. This in turn
implies that the gradient derivative, ∂T/∂x, under the time fractional
integration also has to be a function of time alone. Thus, the solution for
the temperature profile that satisfies the equation and boundary con-
ditions is linear in space, i.e.,

= − ∂
∂

= −T x
s t

T
x s t

1
( )

, 1
( )

.
(22)

To move forward we make the ansatz that, for any given mono-
tonically function f(t), with f(0) = 0, the front advance is given by

=s t f( ) ν
2 . In this way, ′ ′−( )f s f/ ~ 1 ν

2 and we can write the memory flux,
defined in Eq. (10), as

∫= − − − − −( )q t κ
ν

d
dt

f t f τ d
dτ

f dτ d
dt

O f( )
Γ( )

( ( ) ( )) ~ .FM t ν ν
t

ν f ν

0
1 1 2 0

1 , 1 2

(23)

Thus, by the general Caputo property in Eq. (6), the memory flux in
this limit case Stefan problem can be written as

q d
dt

f~ .FM ν
2

(24)

On substituting this in the front condition of Eq. (21) we do indeed
see that =s t f( ) v

2 .
The above result imparts a high degree of utility to the Stefan

memory model. Effectively, whenever the observed temperature profile
is linear, this model can be used to fit any observed monotonic advance
of the phase front with time. For example, a setting of f(t) = tm, with
m > 0, will fit any observed front movement with the general power-
law form s = tn, n = (mν)/2 > 0. Further, if f(t) ~ ln (1 + t), our
generalized Caputo derivative in Eq. (4) has the form of the regularized
Hadamard derivative [19] and we can match the observation of an
ultraslow motion of the melting front where s(t) ~ lnν/2(1 + t).

Note, in the setting of this limit problem we can, by using the second
component of Eq. (22), rearrange the memory flux term in Eq. (24):

= ′ =
′

= ′ ∂
∂

−
−

−q d
dt

f f f
f f

s
f t f t T

x
~ ( ) ( ) .FM v ν

ν2 1
1

1v
2 (25)

From (25) we see that, this limit case Stefan problem based on the
memory flux qFM, defined in Eq. (10), is equivalent to the flux in a
conventional model qF = − K∂T/∂x with a time dependent con-
ductivity K(t) = f′(t)f(t)ν−1.

5.3. A limit non-local Stefan model

Letting c → 0 in the non-local Stefan problem, eqs. (16) and (17),
leads to the following limit problem

∂
∂

= ∂
∂

= ≤ ≤
x

q
x

O T x t x s t( ) ( ( , )) 0, 0 ( ),GNL
x
ν f

0
,

(26)

= − =q κ O T s t ds
dt

( ( )) .GNL
x
ν f

0
,

(27)

Now we see that the non-local flux qGNL can only be a function of
time t. By the property Eq. (5) of the general Caputo derivative, Eq. (4),
this requires, on accounting for the boundary conditions, that

 ⎟= − ⎞
⎠

T x t
f x
f s

O T x t
f s

( , ) 1
( )
( )

, ( , ) ~ 1
( )

.
ν

ν x
ν f

ν0
,

(28)

In this way, if we restrict ourselves to power-law functions with the
form f(x) = xm, with m > 0, we can readily generate power-law in
time predictions for the advance of the phase front as s = tn,
0 ≤ n = 1/(1 + mν) ≤ 1.

There are two point to make here. First, in contrast to the general-
memory approach, the ability of the general non-local approach, to
match a given monotonic advance of the phase front is restricted to
power-laws in time, with exponents in the range 0 < n ≤ 1. Secondly,
again in contrast to the general-memory approach, the general non-
local approach will always generate a curved temperature profile, Eq.
(28). A linear profile is only recovered under normal-diffusion condi-
tions, ν = 1, f(x) = x.

Note further, in considering the limit case Stefan problem with f
(x) = xm, m > 0, if we set a non linear conductivity as K(x) = f(1−ν)/
f′ = x1−mν we see that our non-local flux is equivalent to a local flux
with a non-linear conductivity, i.e., within an appropriate constant,
qGNL ≡ K(x)(∂T/∂x).

6. Discussion

In this work our focus has been to study the influence of the flux
definition on the prediction of the temperature profile T(x, t) and phase
front movement s(t) from a one-dimensional, one-phase Stefan melting
problem. We select three different flux definitions to investigate; (i) a
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conventional Fourier law (conductivity × temperature gradient) with a
conductivity as function of time (aging) or space (graded material), (ii)
a flux that can account for system memory expressed in terms of an
order 0 < ν ≤ 1 fractional derivative of the temperature with respect
to a general function of time f(t), and (iii) a flux that can account for
non-locality, expressed in terms of an order 0 < ν ≤ 1 fractional de-
rivative of the temperature with respect to a general function of space f
(x). All of these flux definitions can produce anomalous diffusion sig-
nals in which the monotonic advance of the melting front differs from
the normally expected value of 1/2.

As we have noted in our introduction, recent work on Stefan pro-
blems [4] has suggested that, in matching a given anomalous ob-
servation, there is some ambiguity in selecting an appropriate flux de-
finition. For example, an observed anomalous front advance can be
independently matched by two of the three choices of flux model. Here,
through investigating and solving a particular limit case Stefan problem
(a model of moisture infiltration into a porous tube), we have mitigated
some of the ambiguity. In particular, we have shown that when we base
the model choice on two physical observations, the front movement and
the temperature profile, we are able to distinguish between the pre-
dictions from a memory and a non-local model. In addition, in the
context of our limit model, as summarized if Fig. 1, we have shown that
the memory flux is equivalent to a conventional flux with a time de-
pendent conductivity and that the non-local flux is equivalent to a
conventional flux with a power-law in space dependent conductivity.
Hence, while this may not be the case for more general Stefan problems,
for the infiltration problem, it is reasonable to separate our phenom-
enological flux models into two classes, time treatments (memory or
non-linear in time conductivity) and space treatments (non-locality or
space dependent conductivity). We can select the appropriate treatment
from observations of the temperature profile; an observed linear profile
indicating a time treatment and an observed non-linear profile in-
dicating a space treatment. Both time and space treatments are able to
match power-law time exponents (sub- 0 < n ≤ 1/2 and super- 1/
2 < n ≤ 1) for front advances. Time treatments, however, are more
versatile, with the mathematical ability to match power-law exponents
beyond the ballistic range n > 1 and alternative time dependencies for
the front movement, e.g., ultra slow log laws.
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